Learning and Transferring Physical Models Trhough Derivatives
Published in Transactions on Machine Learning Research (TMLR), 2026
We propose Derivative Learning (DERL), a supervised approach that models physical systems by learning their partial derivatives. We also leverage DERL to build physical models incrementally, by designing a distillation protocol that effectively transfers knowledge from a pre-trained model to a student one. We provide theoretical guarantees that DERL can learn the true physical system, being consistent with the underlying physical laws, even when using empirical derivatives. DERL outperforms state-of-the-art methods in generalizing an ODE to unseen initial conditions and a parametric PDE to unseen parameters. We also design a method based on DERL to transfer physical knowledge across models by extending them to new portions of the physical domain and a new range of PDE parameters. This introduces a new pipeline to build physical models incrementally in multiple stages.
Recommended citation: Trenta A., Cossu A., Bacciu D., (2026). "Learning and Transferring Physical Models through Derivatives" Transactions on Machine Learning Research (TMLR).
Download Paper | Download Slides | Download Bibtex
