
Learning and Transferring Physical Models through Derivatives

Alessandro Trenta, Andrea Cossu, and Davide Bacciu

Department of Computer Science, University of Pisa, Italy

Correspondence to: alessandro.trenta@phd.unipi.it

Motivation

- Machine Learning can **model real world phenomena** such as climate, chemistry, fluid dynamics.
- However, they **fail to maintain consistency** with physical laws or have **many optimization issues**.
- **Transfer and distillation** of Physical models are understudied.

The Problem

We model physical systems described by Ordinary Differential Equations (ODEs)

$$\dot{\mathbf{u}} = \mathbf{f}(\mathbf{u}(t), t; \xi), \quad \mathbf{u}(0) = \mathbf{u}_0$$

or Partial Differential Equations (PDEs)

$$\begin{cases} \mathcal{F}[\mathbf{u}; \xi](t, \mathbf{x}) = 0 & t \in [0, T], \mathbf{x} \in \Omega, \\ \mathbf{u}(0, \mathbf{x}) = g(\mathbf{x}) & \mathbf{x} \in \Omega, \\ \mathbf{u}(t, \mathbf{x}) = b(t, \mathbf{x}) & \mathbf{x} \in \partial\Omega, \end{cases} \quad \begin{matrix} \text{(PDE)} \\ \text{(IC)} \\ \text{(BC)} \end{matrix}$$

UNIVERSITÀ
DI PISA

Classical Methods

- Rely on discretizations in time and in space with a **pre-determined mesh**.
- Strong theoretical guarantees on convergence as the mesh becomes finer.
- **Slow at inference** as they need to recalculate the solution or interpolate.
- **Do not work out of distribution** without re-initialization.

UNIVERSITÀ
DI PISA

Related Works

- Classical methods: convergence guarantees but slow at inference and do not work OOD.
- NeuralODEs: require external solvers and lose consistency over time.
- Hamiltonian NNs: can be applied only on certain problems.
- PINNs: impose the equations as targets but hard to optimize.

- Given a set of coordinates $\{\mathbf{x}_i\}_{i=1,\dots,N}$, $\mathbf{x}_i \in \mathbb{R}^d$ and the solution at those points $\{u(\mathbf{x}_i)\}_{i=1,\dots,N}$ there are (infinitely) many curves that interpolate them. Only one is true.
- In ODEs, the IC and the definition of the derivatives uniquely determine the trajectory.

UNIVERSITÀ
DI PISA

Our solution: DERL

- In ODEs, the solution is uniquely determined by the derivatives and the IC.
- In a supervised setting, we propose the following **DERL** loss:

$$L(\hat{\mathbf{u}}, \mathbf{u}) = \underbrace{\lambda_u \|\mathbf{D}\hat{\mathbf{u}}(t, \mathbf{x}) - \mathbf{D}\mathbf{u}(t, \mathbf{x})\|_2^2}_{\text{Derivative learning}} + \underbrace{\lambda_B \|\hat{\mathbf{u}}(t, \mathbf{x}) - b(t, \mathbf{x})\|_2^2}_{\text{Boundary cond.}} + \underbrace{\lambda_I \|\hat{\mathbf{u}}(0, \mathbf{x}) - g(\mathbf{x})\|_2^2}_{\text{Initial cond.}}$$

- We will also see how to use DERL to transfer information and build physical models incrementally

Theoretical Results

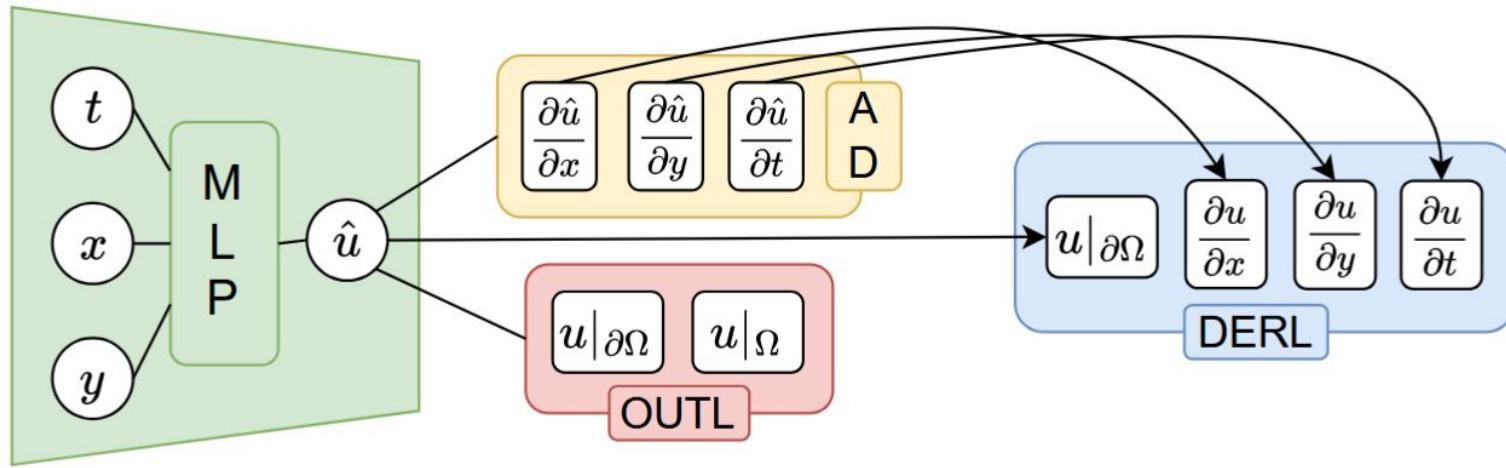
- If the loss converges to zero $L(u, \hat{u}) \rightarrow 0$, the model converges to the solution $\hat{u} \rightarrow u$
- Explicit bound on convergence + the final model also fulfills all the conditions of the PDE.
- DERL works with empirical derivatives.

UNIVERSITÀ
DI PISA

Experiments: Learning Physical Systems

Learn the solution from a set of points and test the models on a finer grid to show generalization.

- We compare our methodology to:
 - OUTL, which learns directly u .
 - OUTL+PINN, which learns u and the equation.
 - SOB, which learns a combination of u and its derivative.
- We measure:
 - The distance to the true solution.
 - The PDE residual (as in PINNs).



Learning Physics: In-domain generalization

Table 2: Results for the Allen-Cahn and continuity equation.

Model	Task	$\ u - \hat{u}\ _2 \times 10^{-4}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-3}$	Task	$\ u - \hat{u}\ _2 \times 10^{-2}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-1}$
DERL (ours)	Allen-Cahn	6.836	1.930	Continuity	9.059	2.247
OUTL		56.95	11.41		8.749	3.762
OUTL+PINN		39.13	7.105		9.378	2.8975
SOB		9.448	2.469		16.52	2.881
(AC) $\lambda(u_{xx} + u_{yy}) + u(u^2 - 1) = f(\xi)$				(CO) $\frac{\partial u}{\partial t} + \nabla \cdot (vu) = 0$		

Table 3: Results for the Navier-Stokes Kovasznay flow experiment.

Model	$\ (\mathbf{u}, p) - (\hat{\mathbf{u}}, \hat{p})\ _2$ $\times 10^{-5}$	$\ \omega - \hat{\omega}\ _2$ $\times 10^{-4}$	(NS.M) $\ \mathcal{F}[\hat{\mathbf{u}}, \hat{p}]\ _2$ $\times 10^{-4}$	(NS.I) $\ \mathcal{F}[\hat{\mathbf{u}}]\ _2$ $\times 10^{-4}$
DERL (ours)	0.6719	0.6611	0.8810	0.5945
OUTL	9.201	106.6	10.58	10.30
OUTL+PINN	3.331	5.042	0.8465	0.5729
SOB	1.125	1.077	1.660	1.177

$$(NS.M) \quad [Du] \cdot \mathbf{u} - \Delta \mathbf{u} + \nabla p = 0$$

$$(NS.I) \nabla \cdot \mathbf{u} = 0$$

Learning Physics: Generalization to New Parameters

We consider the damped pendulum equation.

- The models predict the entire trajectory given the initial conditions.
- We train on 30 trajectories, validate on other 10 and test on 10 unseen ICs.

$$(DP) \quad \ddot{u} + \frac{g}{l} \sin(u) + \frac{b}{m} \dot{u} = 0$$

UNIVERSITÀ
DI PISA

Table 4: Numerical results for the damped pendulum.

Model	$\ u - \hat{u}\ _2 \times 10^{-2}$	$\ \dot{u} - \dot{\hat{u}}\ _2 \times 10^{-2}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-2}$	$\ \mathcal{G}[\hat{u}]\ _2 \times 10^{-2}$	$\ \mathcal{F}[\hat{u}]_{t=0}^{\text{full}}\ _2 \times 10^{-1}$
DERL (ours)	1.069	1.296	1.277	9.244	4.445
OUTL	0.9607	5.766	5.452	20.55	8.233
OUTL+PINN	1.118	7.614	7.070	30.07	10.65
SOB	1.133	2.824	2.803	15.17	8.054

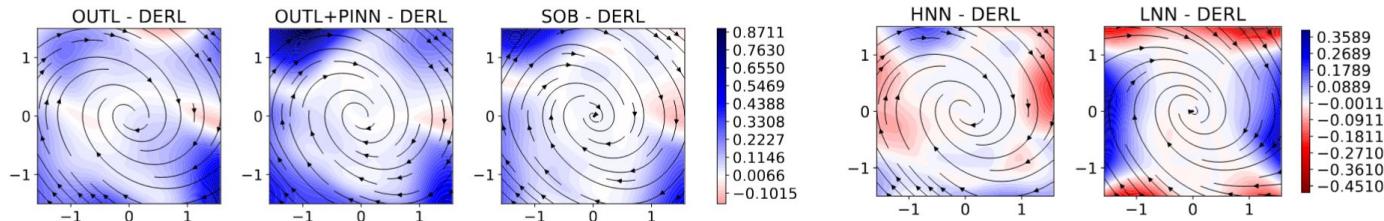


Table 5: Results for the parametric Allen-Cahn experiments, averaged over test parameters.

Model	Single-Parameter		Double-parameter	
	$\ u - \hat{u}\ _2$ $\times 10^{-3}$	$\ \mathcal{F}[\hat{u}]\ _2$ $\times 10^{-2}$	$\ u - \hat{u}\ _2$ $\times 10^{-3}$	$\ \mathcal{F}[\hat{u}]\ _2$ $\times 10^{-2}$
DERL (ours)	5.441	1.730	9.628	1.467
OUTL	8.486	11.67	19.13	8.050
OUTL+PINN	6.413	2.466	27.70	8.446
SOB	9.736	2.276	21.26	1.477

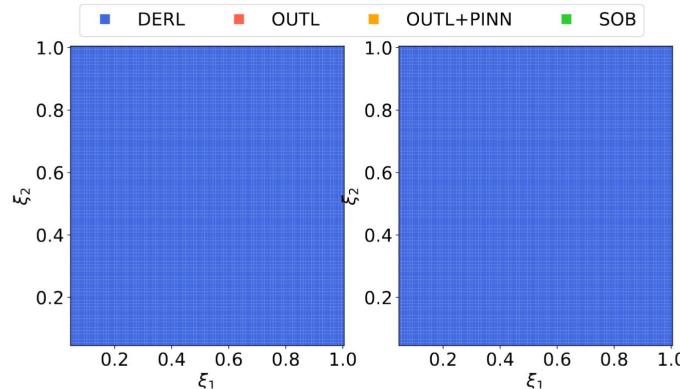


Figure 16: Double-parameter Allen-Cahn equation. The plot is obtained by taking a grid of points ξ_1, ξ_2 in the parameter space and coloring it with the color of the model with the lowest u error or PDE residual for such parameters.

Transferring Physical Systems

- A PINN is trained on the whole domain (teacher).
- Student models learn the IC, BC, and the teacher's derivatives (or outputs).
- Korteweg-de Vries equation: (KdV) $u + uu_t + \nu u_{xxx} = 0$
- We analyze the effect of higher-order derivatives.

UNIVERSITÀ
DI PISA

Table 13: Results for the KdV equation, PINN distillation. Results are empirical L^2 norms over the time-space domain. Derivative and Hessian losses are computed with respect to the PINN. Best model(s) in bold, second best underlined.

Model	$\ \hat{u}_S - u\ _2$	$\ D\hat{u}_S - D\hat{u}_T\ _2$	$\ D^2\hat{u}_T - D^2\hat{u}_S\ _2$	$\ \mathcal{F}[\hat{u}_S]\ _2$	BC loss
PINN (teacher)	0.037171	/	/	0.16638	0.33532
DERL (ours)	0.038331	0.098188	3.9872	0.32480	0.014197
HESL (ours)	0.037380	0.065454	1.1662	0.19153	0.014220
DER+HESL (ours)	0.038524	0.041988	0.85280	0.19317	0.031850
OUTL	0.038589	0.22580	31.582	17.366	0.012830
SOB	0.037447	0.10097	4.0967	0.38523	0.013644
SOB+HES	0.041353	0.13119	3.2684	0.23184	0.016222

Building Physical Models Incrementally

We employ DERL to develop a new methodology to train physical models incrementally.

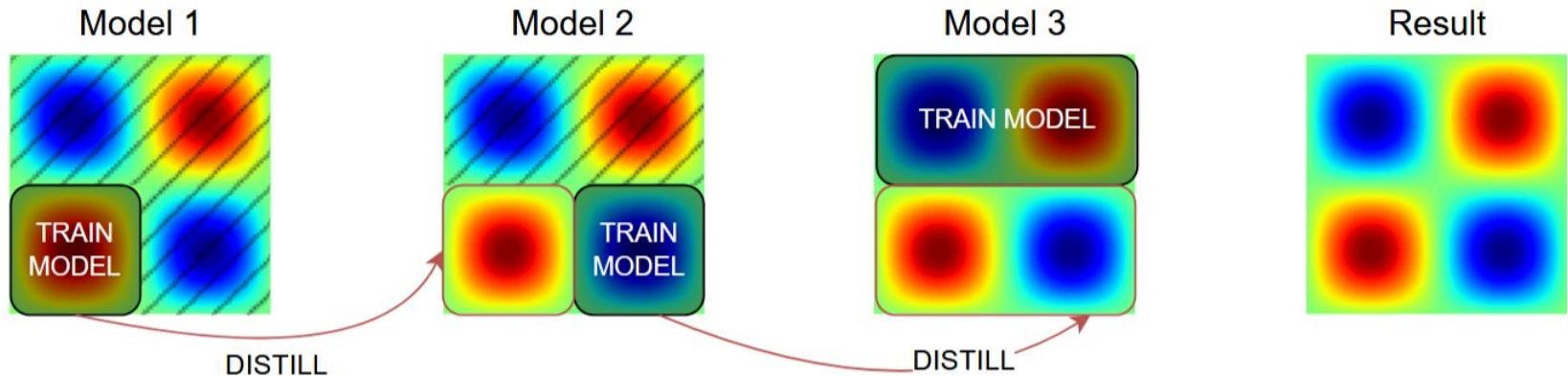
1. Train a PINN on a sub-domain.
2. Collect samples of its outputs and derivatives.
3. Train a new model with a loss that combines a new PINN and distillation.

$$L_{\text{student}} = L_{\text{system}} + \|\mathbf{D}\hat{u}_T - \mathbf{D}\hat{u}_S\|_2$$

More results on knowledge distillation and higher-order derivatives in the paper.

UNIVERSITÀ
DI PISA

Example - Incremental Space Domain Pipeline



Building Physical Models Incrementally

Three experiments:

- Larger time horizon.
- Larger domain space.
- New parameters.

We compare to:

- PINN on the entire domain,
- PINN trained incrementally with no distillation
- PINN trained incrementally with experience replay.

UNIVERSITÀ
DI PISA

Table 6: Results for the physical knowledge transfer experiments. L^2 error and PDE residual on the whole domain (or on test parameters) at the final stage of incremental training.

Model		Larger timespan 5.1		Larger domain 5.2		New parameters 5.3	
		$\ u - \hat{u}\ _2 \times 10^{-2}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-1}$	$\ u - \hat{u}\ _2 \times 10^{-3}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-3}$	$\ u - \hat{u}\ _2 \times 10^{-3}$	$\ \mathcal{F}[\hat{u}]\ _2 \times 10^{-3}$
DERL	from-scratch	3.331	2.932	3.332	7.453	7.736	7.537
	continual	2.379	1.731	2.377	3.873	11.76	7.275
OUTL	from-scratch	9.302	8.966	6.850	15.10	9.757	10.27
	continual	9.334	7.571	3.399	8.995	11.49	11.87
SOB	from-scratch	3.662	4.327	5.151	9.480	11.03	11.63
	continual	2.535	1.536	2.642	5.284	8.840	7.645
PINN	full	9.801	1.730	2.356	6.275	14.96	6.302
PINN	no distillation	15.19	18.29	247.3	245.6	31.87	16.14
PINN	replay	5.371	1.889	5.281	10.54	13.72	6.289

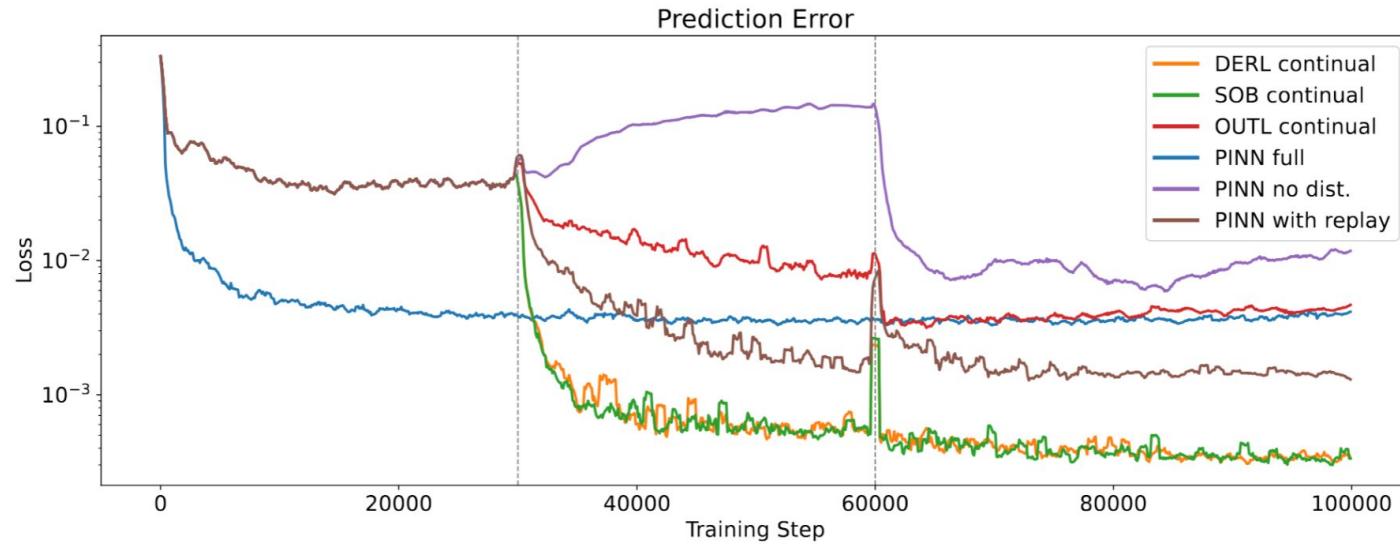


Figure 5: Prediction errors for the KdV transfer experiment for the continual models and the PINN variants. Vertical lines represent when a new step of incremental training is initiated.

UNIVERSITÀ
DI PISA

Thank you for your Attention!

OPENREVIEW

CODE

UNIVERSITÀ
DI PISA