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Motivation

e Machine Learning can model real world phenomena such as climate, chemistry, fluid dynamics.
e However, they fail to maintain consistency with physical laws or have many optimization issues.

e Transfer and distillation of Physical models are understudied.
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The Problem

We model physical systems described by Ordinary Differential Equations (ODEs)
u = f(u(t),t;€), u(0) = ug

or Partial Differential Equations (PDEs)

Flu;€](t,z) =0 te[0,T],z €, (PDE)
u(0,z) =g(x) x€q, (IC)
u(t,z) =b(t,x) x € I, (BC)

UNIVERSITA
DI PisA



Classical Methods

e Relyondiscretizations in time and in space with a pre-determined mesh.
e Strongtheoretical guarantees on convergence as the mesh becomes finer.
e Slow at inference as they need to recalculate the solution or interpolate.

e Do not work out of distribution without re-initialization.
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Related Works

e Classical methods: convergence guarantees but slow at inference and do not work OOD.
e NeuralODEs: require external solvers and lose consistency over time.
e Hamiltonian NNs: can be applied only on certain problems.

e PINNSs:impose the equations as targets but hard to optimize.
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e Givenasetof coordinates {z;};—1._n, x; € R? and the solution at those points {u(x;)}i=1,.. N
there are (infinitely) many curves that interpolate them. Only one is true.

e InODEs, the IC and the definition of the derivatives uniquely determine the trajectory.
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Our solution: DERL

e In ODEs, the solution is uniquely determined by the derivatives and the IC.
e Inasupervised setting, we propose the following DERL loss:

Derivative learning Boundary cond. Initial cond.
N = e .

Ve

L(@,u) = Ay |Da(t, ) — Du(t, @)||5 + Ap |4t @) — b(t, )5+ Ar |40, 2) — g(=) |3

e We will also see how to use DERL to transfer information and build physical models incrementally
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Theoretical Results

e Iftheloss convergestozero L(u, @) — 0 ,the model converges to the solution U — U
e Explicit bound on convergence + the final model also fulfills all the conditions of the PDE.

e DERL works with empirical derivatives.
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Experiments: Learning Physical Systems

Learn the solution from a set of points and test the models on a finer grid to show generalization.

e We compare our methodology to:

o OUTL, which learns directly u.
o OUTL+PINN, which learns u and the equation.
o SOB, which learns a combination of u and its derivative.

e We measure:

o The distance to the true solution.
o  The PDE residual (as in PINNs).

UNIVERSITA
DI PisA

Czarnecki et al., Sobolev training for neural networks, NeurlPS 2017




UNIVERSITA

SITvIS
— v
o
—
)
—
W
>



Learning Physics: In-domain generalization

Table 2: Results for the Allen-Cahn and continuity equation.

Model Task lw—4al2 ||F[a]]l2 Task |lu—1a|2 ||F[a]ll2
S %10~ X102 X107
DERL (ours) &  6.836 1.930 o 9.059 2.247
OUTL e 56.95 11.41 & 8.749 3.762
OUTL+PINN ¢ 39.13 7.105 OO& 9.378 2.8975
SOB 4 9.448 2.469 16.52 2.881
%)
(AC) A(uzz + uyy) +u(u® —1) = f(£) (CO) 5 +V-(vu)=0
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Table 3: Results for the Navier-Stokes Kovasznay flow experiment.

Model [(u,p) — (@,P)|l2 |lw—&[2 (NS.M) [ Fla,p]l2 (NS.I) ||F[a]l
%10 ® x1074 Ve 10 el
DERL (ours) 0.6719 0.6611 0.8810 0.5945
OUTL 9.201 106.6 10.58 10.30
OUTL+PINN 3.331 5.042 0.8465 0.5729
SOB 1.125 1.077 1.660 iLigr

(NS.M) [Du]-u—Au+Vp=0
(NSI)V-u =0
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Learning Physics: Generalization to New Parameters

We consider the damped pendulum equation.

e Themodels predict the entire trajectory given the initial conditions.
e Wetrainon 30 trajectories, validate on other 10 and test on 10 unseen ICs.

(DP) i+ ¢sin(u) + 24 =0
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Table 4: Numerical results for the damped pendulum.

Model lu—allz lla—dllz  |F@llz G[alllz  [IF[a]-
x107?2 %1074 %1072 x1072 x107!

DERL (ours) 1.069 1.296 1.277 9.244 4.445
OUTL 0.9607 5.766 5.452 20.55 8.233
OUTL+PINN 1.118 7.614 7.070 30.07 10.65
SOB 1.133 2.824 2.803 15.17 8.054

OUTL - DERL OUTL+PINN - DERL SOB - DERL HNN - DERL LNN - DERL

N 0.8711 0.3589
‘\“ 0.2689
X 0.1789
| 0.0889
-0.0011

J 0.7630 1
-0.0911

0.6550

0.5469

0.4388

0.3308
-0.1811
-0.2710
—-0.3610

—0.4510

0.2227

0.1146

0.0066 -1
~0.1015
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Table 5: Results for the parametric Allen-Cahn experiments, averaged over test parameters.

Model

Single-Parameter

Double-parameter

lu—al2 ||Flalllz  flu—al2 [|F[a]]2

x1073 w102 x1073 x1072

DERL (ours) 5.441 1.730 9.628 1.467
OUTL 8.486 11.67 19.13 8.050
OUTL+PINN 6.413 2.466 1] 8.446
SOB 9.736 2.276 21.26 1.477

m DERL = OUTL = OUTL+PINN m  SOB
1.0

Figure 16: Double-parameter Allen-Cahn equation. The plot is obtained by taking a grid of points &1,&2 in
the parameter space and coloring it with the color of the model with the lowest u error or PDE residual for

such parameters.
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Transferring Physical Systems

e APINN s trained on the whole domain (teacher).
e Student models learn the IC, BC, and the teacher’s derivatives (or outputs).
e Korteweg-de Vries equation: (KdV) u 4+ wu; + vuge, =0

e We analyze the effect of higher-order derivatives.
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Table 13: Results for the KAV equation, PINN distillation. Results are empirical L? norms over the time-space
domain. Derivative and Hessian losses are computed with respect to the PINN. Best model(s) in bold, second

best underlined.

Model las —ullz  |Das —Digllz ||D*4r —D?isgllz || Flas]llz  BC loss
PINN (teacher) 0.037171 / / 0.16638  0.33532
DERL (ours) 0.038331 0.098188 3.9872 0.32480  0.014197
HESL (ours) 0.037380 0.065454 1.1662 0.19153  0.014220
DER+HESL (ours)  0.038524 0.041988 0.85280 0.19317  0.031850
OUTL 0.038589 0.22580 31.582 17.366  0.012830
SOB 0.037447 0.10097 4.0967 0.38523  0.013644
SOB+HES 0.041353 0.13119 3.2684 0.23184  0.016222
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Building Physical Models Incrementally

We employ DERL to develop a new methodology to train physical models incrementally.
1. Traina PINN on asub-domain.
2. Collect samples of its outputs and derivatives.

3. Train a new model with a loss that combines a new PINN and distillation.

Lstudent — Lsystem ¥ ”DﬂT - D'&S”2

More results on knowledge distillation and higher-order derivatives in the paper.
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Example - Incremental Space Domain Pipeline

Model 1 Model 2 Model 3 Result

TRAIN MODEL ‘III" ‘III’
Jz.ﬂ‘%?i’r
TRAIN '

MODEL

DISTILL
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Building Physical Models Incrementally

Three experiments:

e Largertime horizon.
e Larger domain space.
e New parameters.

We compare to:

e PINN on the entire domain,
e PINN trained incrementally with no distillation
e PINN trained incrementally with experience replay.
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Table 6: Results for the physical knowledge transfer experiments. L? error and PDE residual on the whole
domain (or on test parameters) at the final stage of incremental training.

Larger timespan Larger domain New parameters

Model lu—dalz [IF@]lz | lu—al: [|F@lllz | llu—2all2 [|Fa]l:
x107? x10~! % 107 x107° x10~° ¥
DERL from-scratch 3.331 2.932 3.332 7.453 7.736 7.537
continual 2.379 1431 2.377 3.873 11.76 7.275
OUTL from-scratch 9.302 8.966 6.850 15.10 9.757 10.27
continual 9.334 7.571 3.399 8.995 11.49 11.87
SOB from-scratch 3.662 4.327 5.151 9.480 11.03 11.63
continual 2.535 1.536 2.642 5.284 8.840 7.645
PINN full 9.801 1.730 2.356 6.275 14.96 6.302
PINN no distillation 15.19 18.29 247.3 245.6 31.87 16.14
PINN replay 5.371 1.889 5.281 10.54 13.72 6.289
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Prediction Error

DERL continual
SOB continual

10714 ; = OUTL continual
: | —— PINN full
= PINN no dist.
—— PINN with replay
("]
81072
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10—3.
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Figure 5: Prediction errors for the KdV transfer experiment for the continual models and the PINN variants.
Vertical lines represent when a new step of incremental training is initiated.
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Thank you for your Attention!

OPENREVIEW

“AT10,1/4( / Dy N
2 SRt [UNIVERSITA
5 2\&¥5| DI PISA



